Challenge towards plant recombinant protein expression: instability in nuclear and chloroplast transformation

Mahshid Amiri, Mokhtar Jalali-Javaran, Parastoo Ehsani, Raheem Haddad


It is crucial to maintain the stability of transgene and its expression level. It seems the transformation method and the target organ can influence this instability. To this aim, two transformation systems, Agrobacterium-mediated and particle bombardment systems which have been applied to introduce tissue plasminogen activator (tPA) into nuclear and chloroplast respectively, have been compared to determine transformation efficiency and tPA expression and stability. The presence of tPA gene in transformants has been confirmed by PCR analysis. The gene expression in nuclear transformants and homoplasmy in transplastomic plants have been assayed by ELISA and southern blot, respectively. Some of the Agrobacterium-derived transformants have shown the heritability and stability of the integrated T-DNA harboring the transgene which encodes the tissue plasminogen activator and instability of its expression in T1 generation. Using Southern blot analysis of bombardment-mediated transformants has surprisingly led to detecting the inheritability of tPA. There are several factors lead to silencing of transgene in transgenic plants which should be considered. Possible reasons for these silencing are like vector designing, methylation, copy number, and genome rearrangement. 


Recombinant Protein; Tissue plasminogen activator; Agrobacterum; Particle Bombardment; Instability

Full Text:


This website is optimized for the last versions of Internet Explorer (V. 7 or higher) and Firefox. We therefore advise to download (or upgrade your internet browser to) IE 7 or Firefox. All rights reserved to The All Results Journals (c).

To help promote The All Results Journals:Biol (ISSN:2172-4784) you can now download our poster and display it in your library, common room, office or laboratory.